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Abstract. In recent years there has been a growing interest in quan-
tification, a variant of classification in which the final goal is not accu-
rately classifying each unlabelled document but accurately estimating
the prevalence (or “relative frequency”) of each class c in the unlabelled
set. Quantification has several applications in information retrieval, data
mining, machine learning, and natural language processing, and is a
dominant concern in fields such as market research, epidemiology, and
the social sciences. This paper describes recent research in addressing
quantification via explicit loss minimization, discussing works that have
adopted this approach and some open questions that they raise.

1 Introduction

In recent years there has been a growing interest in quantification (see e.g., [2,
3, 9, 12, 19]), which we may define as the task of estimating the prevalence (or
“relative frequency”) pS(c) of a class c in a set S of objects whose membership in
c is unknown. Technically, quantification is a regression task, since it consists
in estimating a function h : S × C → [0, 1], where S = {s1, s2, ...} is a domain of
sets of objects, C = {c1, ..., c|C|} is a set of classes, and h(s, c) is the estimated
prevalence of class c in set s. However, quantification is more usually seen as a
variant of classification, a variant in which the final goal is not (as in classification)
predicting the class(es) to which an unlabelled object belongs, but accurately
0 The order in which the authors are listed is purely alphabetical; each author has
given an equally important contribution to this work. Fabrizio Sebastiani is on leave
from Consiglio Nazionale delle Ricerche.
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estimating the percentages of unlabelled objects that belong to each class c ∈ C.
Quantification is usually tackled via supervised learning; it has several applications
in information retrieval [8, 9], data mining [11–13], machine learning [1, 20], and
natural language processing [4], and is a dominant concern in fields such as
market research [7], epidemiology [18], and the social / political sciences [15].

Classification comes in many variants, including binary classification (where
|C| = 2 and exactly one class per item is assigned), single-label multi-class
(SLMC) classification (where |C| > 2 and exactly one class per item is assigned),
and multi-label multi-class (MLMC) classification (where |C| ≥ 2 and zero, one
or several classes per item may be assigned). To each such classification task
there corresponds a quantification task, which is concerned with evaluating
at the aggregate level (i.e., in terms of class prevalence) the results of the
corresponding classification task. In this paper we will mostly be concerned with
binary quantification, although we will also occasionally hint at how and whether
the solutions we discuss extend to the SLMC and MLMC cases.

Quantification is not a mere byproduct of classification, and is tackled as a
task on its own. The reason is that the naive quantification approach consisting
of (a) classifying all the test items and (b) counting the number of items assigned
to each class (the “classify and count” method – CC) is suboptimal. In fact, a
classifier may have good classification accuracy but bad quantification accuracy;
for instance, if the binary classifier generates many more false negatives (FN)
than false positives (FP), the prevalence of the positive class will be severely
underestimated.

As a result, several quantification methods that deviate from mere “classify
and count” have been proposed. Most such methods fall in two classes. In the
first approach a generic classifier is trained and applied to the test data, and
the computed prevalences are then corrected according to the estimated bias
of the classifier, which is estimated via k-fold cross-validation on the training
set; “adjusted classify and count” (ACC) [14], “probabilistic classify and count”
(PCC) [3], and “adjusted probabilistic classify and count” (PACC) [3] fall in
this category. In the second approach, a “classify and count” method is used on
a classifier in which the acceptance threshold has been tuned so as to deliver
a different proportion of predicted positives and predicted negatives; example
methods falling in this category are the “Threshold@50” (T50), “MAX”, “X”,
and “median sweep” (MS) methods proposed in [12]. See also [9] for a more
detailed explanation of all these methods.

In this paper we review an emerging class of methods, based on explicit loss
minimization (ELM). Essentially, their underlying idea is to use (unlike the
first approach mentioned above) simple “classify and count” without (unlike the
second approach mentioned above) any heuristic threshold tuning, but using a
classifier trained via a learning method explicitly optimized for quantification
accuracy. This idea was first proposed, but not implemented, in a position paper
by Esuli and Sebastiani [8], and was taken up by three very recent works [2, 9,
19] that we will discuss here.
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The rest of this paper is organized as follows. Section 2 discusses evaluation
measures for quantification used in the literature. Section 3 discusses the reason
why approaching quantification via ELM is impossible with standard learning
algorithms, and discusses three ELM approaches to quantification that have made
use of nonstandard such algorithms. Section 4 discusses experimental results,
while Section 5 concludes discussing questions that existing research has left
open.

2 Loss Measures for Evaluating Quantification Error
ELM requires the loss measure used for evaluating prediction error to be directly
minimized within the learning process. Let us thus look at the measures which
are currently being used for evaluating SLMC quantification error. Note that
a measure for SLMC quantification is also a measure for binary quantification,
since the latter task is a special case of the former. Note also that a measure for
binary quantification is also a measure for MLMC quantification, since the latter
task can be solved by separately solving |C| instances of the former task, one for
each c ∈ C.

Notation-wise, by Λ(p̂, p, S, C) we will indicate a quantification loss, i.e., a
measure Λ of the error made in estimating a distribution p defined on set S and
classes C by another distribution p̂; we will often simply write Λ(p̂, p) when S
and C are clear from the context.

The simplest measure for SLMC quantification is absolute error (AE), which
corresponds to the sum (across the classes in C) of the absolute differences
between the predicted class prevalences and the true class prevalences; i.e.,

AE(p̂, p) =
∑
cj∈C
|p̂(cj)− p(cj)| (1)

AE ranges between 0 (best) and 2(1 − mincj∈C p(cj)) (worst); a normalized
version of AE that always ranges between 0 (best) and 1 (worst) can thus be
obtained as

NAE(p̂, p) =
∑
cj∈C |p̂(cj)− p(cj)|
2(1− min

cj∈C
p(cj))

(2)

The main advantage of AE and NAE is that they are intuitive, and easy to
understand to non-initiates too.

However, AE and NAE do not address the fact that the same absolute
difference between predicted class prevalence and true class prevalence should
count as a more serious mistake when the true class prevalence is small. For
instance, predicting p̂(c) = 0.10 when p(c) = 0.01 and predicting p̂(c) = 0.50 when
p(c) = 0.41 are equivalent errors according to AE, but the former is intuitively a
more serious error than the latter. Relative absolute error (RAE) addresses this
problem by relativizing the value |p̂(cj)− p(cj)| in Equation 1 to the true class
prevalence, i.e.,

RAE(p̂, p) =
∑
cj∈C

|p̂(cj)− p(cj)|
p(cj)

(3)
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RAE may be undefined in some cases, due to the presence of zero denominators.
To solve this problem, in computing RAE we can smooth both p(cj) and p̂(cj)
via additive smoothing, i.e.,

ps(cj) = p(cj) + ε

(
∑
cj∈C

p(cj)) + ε · |C|
(4)

where ps(cj) denotes the smoothed version of p(cj) and the denominator is just
a normalizing factor (same for the p̂s(cj)’s); the quantity ε = 1

2·|s| is often used
as a smoothing factor. The smoothed versions of p(cj) and p̂(cj) are then used in
place of their original versions in Equation 3; as a result, RAE is always defined
and still returns a value of 0 when p and p̂ coincide.

RAE ranges between 0 (best) and (((1−mincj∈C p(cj))/mincj∈C p(cj))+|C|−1)
(worst); a normalized version of RAE that always ranges between 0 (best) and 1
(worst) can thus be obtained as

NRAE(p̂, p) =

∑
cj∈C

|p̂(cj)− p(cj)|
p(cj)

1− min
cj∈C

p(cj)

min
cj∈C

p(cj)
+ |C| − 1

(5)

A third measure, and the one that has become somehow standard in the eval-
uation of SLMC quantification, is normalized cross-entropy, better known as
Kullback-Leibler Divergence (KLD – see e.g., [5]). KLD was proposed as a SLMC
quantification measure in [10], and is defined as

KLD(p̂, p) =
∑
cj∈C

p(cj) log p(cj)
p̂(cj)

(6)

KLD is a measure of the error made in estimating a true distribution p over a
set C of classes by means of a predicted distribution p̂. KLD is thus suitable for
evaluating quantification, since quantifying exactly means predicting how the
items in set s are distributed across the classes in C.

KLD ranges between 0 (best) and +∞ (worst). Note that, unlike AE and
RAE, the upper bound of KLD is not finite since Equation 6 has predicted
probabilities, and not true probabilities, at the denominator: that is, by making a
predicted probability p̂(cj) infinitely small we can make KLD be infinitely large.
A normalized version of KLD yielding values between 0 (best) and 1 (worst)
may be defined by applying a logistic function, e.g.,

NKLD(p̂, p) = eKLD(p̂,p) − 1
eKLD(p̂,p) (7)

Also KLD may be undefined in some cases. While the case in which p(cj) = 0
is not problematic (since continuity arguments indicate that 0 log 0

a should be
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taken to be 0 for any a ≥ 0), the case in which p̂(cj) = 0 and p(cj) > 0 is indeed
problematic, since a log a

0 is undefined for a > 0. To solve this problem, also in
computing KLD we use the smoothed probabilities of Equation 4; as a result,
KLD is always defined and still returns a value of zero when p and p̂ coincide.

The main advantage of KLD is that it is a very well-known measure, having
been the subject of intense study within information theory [6] and, although from
a more applicative angle, within the language modelling approach to information
retrieval [23]. Its main disadvantage is that it is less easy to understand to
non-initiates than AE or RAE.

Overall, while no measure is advantageous under all respects, KLD (or
NKLD) wins over the other measures on several accounts; as a consequence, it
has emerged as the de facto standard in the SLMC quantification literature. We
will hereafter consider it as such.

3 Quantification Methods Based on Explicit Loss
Minimization

A problem with the quantification methods hinted at in Section 1 is that most
of them are fairly heuristic in nature. A further problem is that some of these
methods rest on assumptions that seem problematic. For instance, one problem
with the ACC method is that it seems to implicitly rely on the hypothesis that
estimating the bias of the classifier via k-fold cross-validation on Tr can be
done reliably. However, since the very motivation of doing quantification is that
the training set and the test set may have quite different characteristics, this
hypothesis seems adventurous. In sum, the very same arguments that are used
to deem the CC method unsuitable for quantification seem to undermine the
previously mentioned attempts at improving on CC.

Note that all of the methods discussed in Section 1 employ general-purpose
supervised learning methods, i.e., address quantification by leveraging a classi-
fier trained via a general-purpose learning method. In particular, most of the
supervised learning methods adopted in the literature on quantification optimize
zero-one loss or variants thereof, and not a quantification-specific evaluation
function. When the dataset is imbalanced (typically: when the positives are by
far outnumbered by the negatives), as is frequently the case in text classification,
this is suboptimal, since a supervised learning method that minimizes zero-one
loss will generate classifiers with a tendency to make negative predictions. This
means that FN will be much higher than FP , to the detriment of quantification
accuracy1.

In this paper we look at new, theoretically better-founded quantification
methods based upon the use of classifiers explicitly optimized for the evaluation
function used for assessing quantification accuracy. The idea of using learning
1 To witness, in the experiments reported in [9] the 5148 test sets exhibit, when
classified by the classifiers generated by the linear SVM used for implementing the
CC method, an average FP/FN ratio of 0.109; by contrast, for an optimal quantifier
this ratio is always 1.
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algorithms capable of directly optimizing the measure (a.k.a. “loss”) used for
evaluating effectiveness is well-established in supervised learning. However, in
our case following this route is non-trivial; let us see why.

As usual, we assume that our training data Tr = {(x1, y1), ..., (x|Tr|, y|Tr|)}
and our test data Te = {(x′1, y′1), ..., (x′|Te|, y′|Te|)} are independently generated
from an unknown joint distribution P (X ,Y), where X and Y are the input and
output spaces, respectively. In this paper we will assume Y to be {−1,+1}.

Our task is to learn from Tr a hypothesis h ∈ H (where h : X → Y and H
is the hypothesis space) that minimizes the expected risk RΛ(h) on sets Te of
previously unseen inputs. Here Λ is our chosen loss measure; note that it is a
set-based (rather than an instance-based) measure, i.e., it measures the error
incurred by making an entire set of predictions, rather than (as instance-based
measures λ do) the error incurred by making a single prediction. Our task consists
thus of finding

arg min
h∈H

RΛ(h) =
∫
Λ((h(x′1), y′1), ..., (h(x′|Te|), y′|Te|))dP (Te) (8)

If the loss function Λ over sets Te can be linearly decomposed into the sum of
the individual losses λ generated by the members of Te, i.e., if

Λ((h(x′1), y′1), ..., (h(x′|Te|), y′|Te|)) =
|Te|∑
i=1

λ(h(x′i), y′i) (9)

then Equation 8 comes down to

arg min
h∈H

RΛ(h) = arg min
h∈H

Rλ(h) =
∫
λ(h(x′, y′)dP (x′, y′) (10)

Discriminative learning algorithms estimate the expected risk RΛ(h) via the
empirical risk (or “training error”) RΛTr(h), which by virtue of Equation 9 becomes

R̂Λ(h) = RΛTr(h) = RλTr(h) =
|Tr|∑
i=1

λ(h(xi, yi) (11)

and pick the hypothesis h which minimizes RλTr(h).
The problem with adopting this approach in learning to quantify is that all

quantification loss measures Λ are such that Equation 9 does not hold. In other
words, such loss measures are nonlinear (since they do not linearly decompose into
the individual losses brought about by the members in the set) and multivariate
(since Λ is a function of all the instances, and does not break down into univariate
loss functions). For instance, we cannot evaluate the contribution to KLD of a
classification decision for a single item x′i, since this contribution will depend on
how the other items have been classified; if the other items have given rise, say, to
more false negatives than false positives, then misclassifying a negative example
(thus bringing about an additional false positive) is even beneficial!, since false
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positives and false negatives cancel each other out when it comes to quantification
accuracy. This latter fact shows that any quantification loss (and not just the
ones discussed in Section 2) is inherently nonlinear and multivariate. This means
that, since Equations 9–11 do not hold for quantification loss measures Λ, we
need to seek learning methods that can explicitly minimize RΛTr(h) holistically,
i.e., without making the “reductionistic” assumption that RΛ(h) = Rλ(h).

As mentioned in the introduction, the idea to use ELM in quantification
applications was first proposed, but not implemented, in [8]. In this section we
will look at three works [2, 9, 19] that have indeed exploited this idea, although
in three different directions.

3.1 Quantification via Structured Prediction I: SVM(KLD) [9]

In [8] Esuli and Sebastiani also suggested using, as a “holistic” algorithm of the
type discussed in the previous paragraph, the SVM for Multivariate Performance
Measures (SVMperf ) learning algorithm proposed by Joachims [16]2.

SVMperf is a learner of the Support Vector Machine family that can generate
classifiers optimized for any non-linear, multivariate loss function that can be
computed from a contingency table (as all the measures presented in Section 2
are). SVMperf is an algorithm for multivariate prediction: instead of handling
hypotheses h : X → Y mapping an individual item xi into an individual label yi, it
considers hypotheses h̄ : X̄ → Ȳ which map entire tuples of items x̄ = (x1, ...,xn)
into tuples of labels ȳ = (y1, ..., yn), and instead of learning hypotheses of type

h(x) : sign(w · x + b) (12)

it learns hypotheses of type

h̄(x̄) : arg max
y′∈Y

(w · Ψ(x̄, ȳ′)) (13)

where w is the vector of parameters to be learnt during training and

Ψ(x̄, ȳ′) =
n∑
i=1

xiy′i (14)

(the joint feature map) is a function that scores the pair of tuples (x̄, ȳ′) according
to how “compatible” the tuple of labels ȳ′ is with the tuple of inputs x̄.

While the optimization problem of classic soft-margin SVMs consists in finding

arg min
w,ξi≥0

1
2w ·w + C

|Tr|∑
i=1

ξi

such that yi[w · xi + b] ≥ (1− ξi) for all i ∈ {1, ..., |Tr|}
(15)

2 In [16] SVMperf is actually called SVMΛmulti, but the author has released its
implementation under the name SVMperf ; we will indeed use this latter name.
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the corresponding problem of SVMperf consists instead of finding

arg min
w,ξ≥0

1
2w ·w + Cξ

such that w · [Ψ(x̄, ȳ)− Ψ(x̄, ȳ′) + b] ≥ Λ(ȳ, ȳ′)− ξ for all ȳ′ ∈ Ȳ/ȳ
(16)

Here, the relevant thing to observe is that the sample-based loss Λ explicitly
appears in the optimization problem.

We refer the interested reader to [16, 17, 21] for more details on SVMperf and
on SVMs for structured output prediction in general. From the point of view
of the user interested in applying it to a certain task, the implementation of
SVMperf made available by its author is essentially an off-the-shelf package, since
for customizing it to a specific loss Λ one only needs to write a small module
that describes how to compute Λ from a contingency table.

While [8] only went as far as suggesting the use of SVMperf to optimize a
quantification loss, its authors later went on to actually implement the idea, using
KLD as the quantification loss and naming the resulting system SVM(KLD)
[9]. In Section 4 we will describe some of the insights that they obtained from
experimenting it.

3.2 Quantification Trees and Quantification Forests [19]

Rather than working in the framework of SVMs, the work of Milli and colleagues
[19] perform explicit loss minimization in the context of a decision tree framework.
Essentially, their idea is to use a quantification loss as the splitting criterion in
generating a decision tree, thereby generating a quantification tree (i.e., a decision
tree specialized for quantification). The authors experiment with three different
quantification loss measures: (a) (a proxy of) absolute error, i.e., D(p̂, p) =∑
cj∈C |FP − FN |; (b) KLD; (c) MOM(p̂, p) =

∑
cj∈C |FP

2
j − FN2

j |. Measure
(c) is of particular significance since it is not a “pure” quantification loss. In fact,
notice that MOM(p̂, p) is equivalent to

∑
cj∈C(FNj + FPj) · |FNj − FPj |, and

that while the second factor (|FNj − FPj |) may indeed be seen as representing
quantification error, the first factor (FNj + FPj) is a measure of classification
error. The motivation behind the authors’ choice is to minimize at the same
time classification and quantification error, based on the notion that a quantifier
that has good quantification accuracy but low classification accuracy is somehow
unreliable, and should be avoided.

The authors go on to propose the use of quantification forests, i.e., random
forests of quantification trees, where these latter as defined as above. For more
details we refer the interested reader to [19].

It should be remarked that [19] is the only one, among the three works we
review in this section, that directly addresses SLMC quantification. The other two
works that we have discussed [2, 9] instead address binary quantification only; in
order to extend their approach to SLMC quantification, binary quantification has
to be performed independently for each class and the resulting class prevalences
have to be rescaled so that they sum up to 1. This is certainly suboptimal, but
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better solutions are not known since a SLMC equivalent of SVMperf , which is
binary in nature, is not known.

3.3 Quantification via Structured Prediction II: SVM(Q) [2]

Barranquero et al.’s forthcoming work [2] proposes an approach to binary quan-
tification that combines elements of the works carried out in [9] and [19]. As
suggested in [8], and as later implemented in [9], Barranquero et al. also use
SVMperf to directly optimize quantification accuracy. However, similarly to [19],
they optimize a measure (which they call Q-measure) that combines classifica-
tion accuracy and quantification accuracy. Their Q-measure is shaped upon the
famous Fβ measure [22, Chapter 7], leading to a loss defined as

Λ = (1−Qβ(p̂, p)) = (1− (β2 + 1)Γc(p̂, p) · Γq(p̂, p)
β2Γc(p̂, p) + Γq(p̂, p)

)

where Γc and Γq are a measure of classification “gain” (the opposite of loss) and
a measure of quantification gain, respectively, and 0 ≤ β ≤ +∞ is a parameter
that controls the relative importance of the two; for β = 0 the Qβ measure
coincides with Γc, while when β tends to infinity Qβ asymptotically tends to Γq.

As a measure of classification gain Barranquero et al. use recall, while as a
measure of quantification gain they use (1−NAE), where NAE is as defined
in Equation 2. The authors motivate the (apparently strange) decision to use
recall as a measure of classification gain with the fact that, while recall by itself
is not a suitable measure of classification gain (since it is always possible to
arbitrarily increase recall at the expense of precision or specificity), to include
precision or specificity in Qβ is unnecessary, since the presence of Γq in Qβ has
the effect of ruling out anyway those hypotheses characterized by high recall and
low precision / specificity (since these hypotheses are indeed penalized by Γq).
The experiments presented in the paper test values for β in {0.5,1,2}.

4 Experiments

The approaches that the three papers mentioned in this section have proposed
have never been compared experimentally, since the experimentation they report
use different datasets. The only paper among the three where the experimentation
is carried out on high-dimensional datasets is [9], where tests are conducted on
text classification datasets, while [19] and [2] only report test on low-dimensional
ones; in the case of [19], this is due to the fact that the underlying technology
(decision trees) does not scale well to high dimensionalities.

We are currently carrying out experiments aimed to compare the approaches
of [2] and [9] on the above high-dimensional datasets, testing a range of different
experimental conditions (different class prevalence, different distribution drift,
etc.) similarly to what done in [9]. We hope to have the results ready in time for
them to be presented at the workshop.
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5 Discussion

The ELM approach to quantification combines solid theoretical foundations with
state-of-the-art performance, and promises to provide a superior alternative to
the mostly empirical approaches that have been standard in the quantification
literature. The key question that the (few) past works along this line leave open
is: should one (a) optimize a combination of a quantification and a classification
measure, or rather (b) optimize a pure quantification measure? In other words:
how fundamental is classification accuracy to a quantifier? Approach (a) has
indeed intuitive appeal, since we intuitively tend to trust a quantifier if it is
also a good classifier; a quantifier that derives its good quantification accuracy
from a high, albeit balanced, number of false positives and false negatives makes
us a bit uneasy. On the other hand, approach (b) seems more in line with
accepted machine learning wisdom (“optimize the measure you are going to
evaluate the results with”), and one might argue that being serious about the
fact that classification and quantification are fundamentally different means that,
if a quantifier delivers consistently good quantification accuracy at the expense
of classification accuracy, this latter fact should not be our concern. Further
research is needed to answer these questions and to determine which among these
contrasting intuitions is more correct.
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